Introduction to Quantum Computing

Tutorial 6 - Solutions

16 November 2017

Problem 1

Recall from the lectures the definition of the J gate as:

$$ J(\theta) = HR(\theta) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & e^{i\theta} \\ 1 & -e^{i\theta} \end{pmatrix} $$

Additionally, recall that any single qubit gate can be decomposed using J gates: $U = J(0)J(\theta_1)J(\theta_2)J(\theta_3)$, for some $\theta_1, \theta_2, \theta_3$.

A) Find the J decompositions (i.e. find the angles $\theta_1, \theta_2, \theta_3$) for the gates Z and X.

Solution: In certain cases we can use various heuristic techniques to find the theta parameters. These would entail using things like $J(0) = H$, $HH = I$, $HXH = Z$, $HZH = X$ etc. However, we will calculate the general expression for U from the decomposition and equate it to Z and X respectively, to determine the values of the theta parameters. As mentioned, we have that $J(0) = H$ and that $HH = I$, and so our expression for U becomes:

$$ U = HHR(\theta_1)J(\theta_2)J(\theta_3) = R(\theta_1)J(\theta_2)J(\theta_3) $$

If we do the explicit matrix multiplication, we find that:

$$ U = \frac{1}{2} \begin{pmatrix} 1 + e^{i\theta_2} & e^{i\theta_3} - e^{i(\theta_1 + \theta_3)} \\ e^{i\theta_1} - e^{i(\theta_1 + \theta_2)} & e^{i(\theta_1 + \theta_2 + \theta_3)} \end{pmatrix} $$

It is now a simple matter of identifying the matrix elements corresponding to the Z and X operators and picking the appropriate values for $\theta_1, \theta_2, \theta_3$. It is easy to notice that for Z we have $\theta_1 = \pi, \theta_2 = \theta_3 = 0$ and for X we have $\theta_1 = \theta_3 = 0$ and $\theta_2 = \pi$.

B) Using these decompositions draw the measurement patterns implementing the gates Z and X.

Solution: Since we know from the lectures how to equate a composition of J gates with an MBQC pattern, we have for Z:
Problem 2

Given the following pattern in which the input is \(|\psi\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |0\rangle) \):

Find the corresponding quantum gate of this pattern and the output state.

Solution: Similar to the previous exercise, we know from the lecture that the given measurement pattern is a composition of \(J \) gates acting on the first qubit, with the \(\theta \) values given by the measurement angles. In this case, after performing the necessary corrections, the output state will be:

\[
|\phi\rangle = J(-\pi/2)J(\pi)J(\pi/2)J(0) |\psi\rangle
\]

Note that is in the reverse order of the ordering of the measurement angles. It is easy to see why, performing an \(X \) measurement on the first qubit means the second qubit becomes (after correction) \(J(0) |\psi\rangle \). When we then perform a \(-\pi/2\) measurement on this qubit, after correction the third one becomes \(J(\pi/2)J(0) |\psi\rangle \). And so on, until we reach the last qubit. Let us now compute this product of unitaries acting on \(|\psi\rangle \).

\[
U = J(-\pi/2)J(\pi)J(\pi/2)J(0) = \frac{1}{4} \left(\begin{array}{cc} 1 & -i \\ i & 1 \end{array} \right) \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & i \\ 1 & -i \end{array} \right) \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)
\]

Performing the computation yields:

\[
U = \frac{1}{4} \begin{pmatrix} 0 & -4i \\ 4i & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\]
Which we can identify as the Pauli Y gate. Computing the action of this on $|\psi\rangle = \frac{i}{\sqrt{2}}(|1\rangle - |0\rangle)$ yields:

$$Y |\psi\rangle = Y \frac{i}{\sqrt{2}}(|1\rangle - |0\rangle) = \frac{(-i)i}{\sqrt{2}} |0\rangle - \frac{ii}{\sqrt{2}} |1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = +$$

Problem 3

Give a measurement pattern that takes 2 qubits as input and produces as output the familiar Bell state $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.

Solution: Recall that when we have two $|+\rangle$ states and we entangle them with a cZ operation, we end up with the state:

$$\frac{|+0\rangle + |-1\rangle}{\sqrt{2}}$$

This is almost the $|\Phi^+\rangle$ and in fact can be made into $|\Phi^+\rangle$ by simply applying a Hadamard to either qubit. Our idea for a measurement pattern is then to simply entangle the two $|+\rangle$ input qubits and then apply a Hadamard operation to the second. The graph would then look like this:

Essentially, the procedure for obtaining this Bell state is the following:

- We start with input qubits $|+\rangle_1$ and $|+\rangle_2$
- Add additional qubit $|+\rangle_3$
- Entangle qubits 1 2 and 2 3 with cZ operations
- Measure qubit 2 in X basis
- Apply correction to qubit 3 if necessary
- Bell state is given by qubits 1 and 3